Noticias Tecnología - Innovación - Ciencia

add ver todas

Uso de la Inteligencia Artificial para fabricar nuevos materiales

Investigaciones recientes pretenden utilizar inteligencia artificial para acelerar el desarrollo de nuevos materiales. Por ejemplo, en abril de 2018, investigadores de la Universidad Northwestern utilizaron máquinas que aprendían a desarrollar un nuevo material de vidrio metálico a un ritmo 200 veces más rápido que el proceso tradicional de experimentación en laboratorio. La convergencia de la IA con el desarrollo y la fabricación de materiales avanzados puede transformar muchos sectores. Industrias como la de semiconductores, aeroespacial y automotriz están experimentando con la IA para desarrollar materiales avanzados, proyectos estratégicos y obtener una ventaja competitiva.
La IA no sólo ofrece un enfoque para descubrir y crear nuevos materiales, sino que también puede acortar significativamente el período de desarrollo y análisis de datos, que requiere mucho tiempo antes del lanzamiento. La infusión de Inteligencia Artificial presenta un enfoque para analizar y probar materiales a un ritmo sin precedentes, así como para retroalimentar los datos en los algoritmos a fin de reforzar las predicciones y los conocimientos. Sin embargo, un problema constante es la dispersión y escasez de datos para el entrenamiento, que es un ingrediente clave.

Ejemplos de desarrollos en investigación

  • Investigadores de Northwestern utilizaron IA para desarrollar un nuevo vidrio metálico, un material que tiene aplicación en dispositivos inteligentes y en la industria aeroespacial​
  • Investigadores del MIT desarrollaron una red neuronal para analizar un conjunto de datos de entrenamiento con el fin de encontrar patrones para crear recetas más eficientes y rentables y descubrir nuevos materiales
  • Equipo de Stanford utilizo machine learning para desarrollar electrolitos mejorados para baterías de iones de litio. Los resultados actuales muestran que el modo de machine learning supera a los expertos en sus predicciones
  • Investigadores de Maryland están utilizando machine learning para la investigación y la evaluación de los superconductores
  • Investigadores japoneses utilizaron un sistema de IA, inicialmente desarrollado para videojuegos, para analizar y explorar el diseño de estructuras de aleación de silicio-germanio más eficiente térmicamente

Ejemplos de desarrollos en empresas

  • IBM y MIT han anunciado un acuerdo de 10 años y una inversión de 240 millones de dólares en el MIT-IBM Watson AI Lab centrado en el avance de IA y la exploración de nuevos materiales, hardware y computación cuántica
  • ​Toyota posee el Instituto de Investigación de Toyota (TRI) donde se han invertido 35 millones de dólares a lo largo de 4 años en un esfuerzo colaborativo de investigación y desarrollo para aplicar la IA al diseño y descubrimiento de nuevos materiales relacionados con el almacenamiento de energía. Entre los socios se encuentran MIT, Stanford, la Universidad de Michigan y la empresa de materiales Ilika
  • Boeing trabaja con la unidad de Sensores y Materiales de los laboratorios HRL para desarrollar una nueva receta de polvo de aluminio y otros elementos para imprimir en 3D una pieza metálica para aviones de nueva generación
  • Citrine Informatics desarrolló una plataforma que utiliza el aprendizaje automático para consolidar los conjuntos de datos de productos químicos y materiales en un depósito central para el análisis de recetas

Guidance

  • El potencial es significativo, tanto para las empresas individuales que buscan lograr una ventaja competitiva, realizar ahorros y reducir los años de investigación y desarrollo, como para las industrias que han estado atadas a paradigmas de tecnología heredada, estructuras de costos y modelos de negocios. Por ejemplo las baterías y los semiconductores más eficientes pueden apoyar a las nuevas generaciones de vehículos autónomos, sensores y sistemas de movilidad, al tiempo que ayudan a satisfacer la demanda energética futuro
  • ​Además del desarrollo de nuevos materiales también se observa un uso creciente de análisis y computación avanzados para identificar formulaciones downstream de las principales empresas químicas. Por ejemplo empresas como P&G han confiado en las empresas químicas para desarrollar las recetas de sus principales productos. Ahora, la informática y el Advanced Analytics les esta permitiendo traer de vuelta parte del proceso a la empresa, permitiendo un mayor control sobre el desarrollo de productos y contratando a proveedores de menor coste
  • Uno de los mayores desafíos del uso de la IA para el análisis y el desarrollo de nuevos materiales es la información limitada. Aunque el conjunto de datos este creciendo, los datos incompletos seguirán siendo un obstáculo y necesitaran supervisión humana hasta que las redes neuronales tengan la capacidad de aprender y ser más inteligentes. El proyecto del MIT que trabajaba con la aplicación de IA para analizar documentos y extraer recetas de materiales tuvo grandes obstáculos asociados a la limitación de la información
  • Aunque la combinación entre modelos químicos e inteligencia artificial para el desarrollo de nuevos productos tiene mucho potencial, se pueden esperar mayores avances cuando la combinación de computación súper y cuántica se aplique al I+D. Las empresas están llegando ahora a un punto en el que podría ser posible utilizar los avances en la potencia computacional, la técnica analítica y los enfoques matemáticos para llevar a cabo «experimentos in silico”

¿Quieres saber más?

Artículos: Artificial intelligence aids material fabrication; The AI company that helps Boeing cook new metals for Jets







NOTICIAS RELACIONADAS

add ver todas

En el hotel futurista de Alibaba, los robots entregan...

En el futurista hotel "FlyZoo" de Alibaba Group Holding Ltd., recientemente inaugurado en China, robots en forma de disco negro de aproximadamente un metro de altura entregan comida y dejan toallas limpias a los huéspedes. El hotel, que cuenta con 290 habitaciones, es una incubadora de tecnología que Alibaba quiere vender a la industria hotelera en el futuro y una oportunidad para mostrar su destreza en Inteligencia Artificial.

JD.com crea una nueva unidad para sus servicios de...

JD.com, la segunda empresa más grande de comercio electrónico de China después de Alibaba, creará un nuevo grupo empresarial llamado JD Logistics, que aprovechará la infraestructura de entrega y depósito existente de JD.com. Las consecuencias de la creación de JD Logistics: Diferenciación frente al resto de compañías de ecommerce de la competencia – El hecho de llevar la operativa de su propia red logística es la forma principal en la que JD.com se diferencia de las compañías de ecommerce de la competencia, que suelen depender de proveedores externos. Automatización de la logística –Richard Liu, CEO de JD.com, planea invertir más en automatización de la logística, lo cual incluye almacenes automáticos y entregas de aviones no tripulados Aceleración del desarrollo de su infraestructura – JD Logistics ofrecerá soluciones integradas a lo largo de la cadena de suministro como almacenamiento, transporte, entrega y servicios postventa, tanto a vendedores de ecommerce como a otras compañías. Para saber más haz click aquí

La Luz del sol convierte el CO2 directamente como en...

Según la Agencia Internacional de Energía (AIE), el sector químico es uno de los subsectores industriales más grandes en términos de emisiones directas de CO2.  Estas emisiones provienen en gran medida del combustible que se utiliza como materia prima y no como fuente de energía. Reducir el carbono emitido por el sector requiere nuevos procesos y materias primas, en este sentido, una empresa con sede en Ámsterdam llamada Photanol ha encontrado una solución prometedora para reducir estas emisiones. ¿Cómo logra Photanol reducir las emisiones de CO2? Mediante la optimización de cianobacterias, Photanol ha convertido estas bacterias en minifábricas impulsadas por CO2 y luz solar. A través de la fotosíntesis, estas bacterias producen sustancias químicas útiles, lo que les permite reemplazar materias primas de origen fósil. El proceso de Photanol se puede utilizar para crear cualquier compuesto de carbono. Esto significa que puede hacer que los monómeros se utilicen para diferentes plásticos, ingredientes para detergentes e incluso combustibles, todo en un proceso limpio, renovable y circular. La tecnología de la plataforma de la empresa también significa que el proceso es fácil de escalar. La empresa ha estado trabajando en estrecha colaboración con diversos socios e inversores para construir una planta piloto y expandir su proceso

La realidad aumentada podría dar a cirujanos la visión de...

La fusión de exámenes imagenológicos junto con la tecnología de ultrasonidos, permite a los cirujanos observar la anatomía del paciente en procedimientos quirúrgicos a través de unas gafas de realidad aumentada. La startup MediView XR, ha diseñado una tecnología con gafas AR para su empleo en la medicina. Esto no solo se presenta como un éxito para los profesionales de la salud, sino también para los propios pacientes, siendo un mérito para ambos.