Noticias Tecnología - Innovación - Ciencia

add ver todas

¿Cómo enseñar a la IA el concepto de «parecido, pero diferente»?

La Inteligencia Artificial tal y como hoy la conocemos engloba muchos conceptos que se encuentran interconectados y que en muchas ocasiones pueden llegar a ser un galimatías al profano. Machine Learning se refiere a la capacidad de la que se dota a la máquina para aprender algo sin estar explícitamente programada para dicha actividad. Deep Learning se refiere a las redes neuronales profundas, construidas a semejanza de las propias humanas y que permiten a la máquina procesar grandes cantidades de datos. De esta manera, la IA es capaz de llevar a cabo un aprendizaje, procesando grandes sets de datos que sirven de entrenamiento bajo una serie de normas, para aportar resultados que resulten correctos con un grado de confianza razonable.

Sin embargo, este aprendizaje se basa en la constatación de si una determinada conclusión es correcta o incorrecta, sin aportar a la red el porcentaje de acierto que su conclusión ha tenido. Este “porcentaje de acierto” sería el equivalente humano al de un niño al que se muestra una foto de un lobo y a la pregunta de “¿Qué es?”, contestase “Un perro”. No es exactamente lo mismo, pero es efectivamente parecido. Si aplicásemos a las redes neuronales de Machine Learning ese mismo principio de aprendizaje acerca del “parecido” entre conceptos, las pequeñas diferencias que iríamos encontrando entre las probabilidades asignadas a cada resultado, podrían ofrecer información valiosa acerca de la capacidad predictiva de un modelo cuando se enfrenta a datos desconocidos.
Esto es lo que sostiene el profesor Atsuso Maki del KHT Royal Institute of Technology, y que puede ser especialmente relevante a la hora de pedir a un robot por ejemplo, que seleccione objetos; una capacidad cuyas aplicaciones en industria pueden ser extremadamente útiles.

Otro de los problemas que pueden presentar los modelos es el llamado “sobreajuste”, que se produce cuando el modelo se ha adaptando tanto al set de datos de entrenamiento, que presta demasiada atención al ruido y a los datos específicos, aportando conclusiones excelentes acerca del set de datos de entrenamiento, pero cuando es entrenado con un nuevo set de datos que no presenta estos detalles particulares, presenta una gran cantidad de errores.
Este problema se soluciona aplicando la regularización, que consiste en llevar a cabo una reducción de la capacidad del modelo de fijarse en los pequeños detalles de manera que aumente su capacidad de obtener conclusiones basándose en la información más general. Existen diferentes técnicas para llevar a cabo la regularización. Recientemente ha surgido un nuevo enfoque que propone precisamente aplicar la idea de las probabilidades de acierto, y que de acuerdo con Maki, potenciaría las capacidades de los modelos para generalizar.
Aunque en la actualidad estas técnicas se encuentran aún en desarrollo, incorporar características similares del funcionamiento de la mente humana a los modelos de IA, tiene un potencial de desarrollo muy prometedor.


Este último punto, acerca de la similitud entre la IA y el intelecto humano ha sido altamente controversial a lo largo de los años, levantando ampollas incluso entre la comunidad científica. Steven Hawking anunció en una ocasión que la IA podría llegar a terminar con la raza humana, aludiendo a que a medida que se multiplique su velocidad de aprendizaje y de mejora, serían capaces de desarrollarse, entrando en competencia con el ser humano, más lento en el desarrollo y que por tanto, terminaría por reemplazarlo. Por otro lado, los defensores de la IA sostienen que no se trata de un enfrentamiento entre ambas capacidades, sino que se debe enfocar como una relación en última instancia de simbiosis en la que las capacidades de ambas partes se ven reforzadas creando un círculo virtuoso en el que se retroalimentan y potencian sus virtudes.


La realidad es que aunque la IA ha alcanzado un gran nivel de desarrollo, son muchas las capacidades que quedan por ser explotadas y muchos los caminos por los que puede discurrir la relación entre el ser humano y la Inteligencia Artificial.

Guidance

  • La IA tiene múltiples aplicaciones a la gestión empresarial, siendo una de las más extendidas la medición de los flujos de tráfico a los comercios de manera que es posible optimizar el personal disponible y gestionar las colas y el stock de producto a cada momento. Mejorando así la eficiencia y los costes de operación.
  • En el campo de la agricultura, la aplicación de IA mejorará los rendimientos de las cosechas, siendo capaces de optimizar la producción de cada cosecha a través de un análisis que sea capaz de predecir variables como las condiciones climáticas, la calidad del suelo o las necesidades particulares de cada cultivo en cada momento específico.
  • La IA también ofrece posibilidades como alternativa para el cuidado de personas mayores, ofreciéndoles compañía y siendo capaz de mantener conversaciones. Además de monitorizar el estado de salud de la persona y predecir posibles complicaciones médicas.


​¿Quieres saber más?

Vídeo: Artificial Intelligence VS Humans – Jim Hendler

NOTICIAS RELACIONADAS

add ver todas

Mejorar las semillas para la agricultura en el desierto en...

En un contexto donde la desertificación y el cambio climático representan desafíos cada vez más apremiantes para la agricultura global, la necesidad de encontrar soluciones innovadoras es fundamental. Una startup agrícola llamada SaliCrop ha surgido como un faro de esperanza en este panorama, ofreciendo un método revolucionario para fortalecer las semillas y aumentar su resistencia al calor y la escasez de agua. La clave del enfoque de SaliCrop radica en aprovechar la respuesta natural de las semillas a los factores estresantes ambientales. Por lo tanto, en lugar de recurrir a toxinas o tratamientos químicos, la startup utiliza la respuesta natural de las semillas a los factores estresantes ambientales para mejorar su adaptación a condiciones adversas. Como resultado, las plantas cultivadas a partir de estas semillas se vuelven más resistentes al calor, la sequía y los suelos salinos, lo que les permite hacer frente a las condiciones del cambio climático. Por el momento, la startup ha realizado ensayos con productores comerciales y los beneficios de este método innovador son evidentes: En cultivos como alfalfa, cebolla y tomates, el rendimiento ha aumentado significativamente, alcanzando incrementos entre el 16 y el 40%. Estos resultados son especialmente alentadores en un contexto global donde las

La UE acaba de publicar unas directrices debilitadas para...

La privacidad de los usuarios, así como el almacenamiento de los datos obtenidos por organizaciones, ha producido desconfianza en la sociedad. Debido al desarrollo alcanzado por las nuevas tecnologías y su uso extendido por parte de las empresas, se ha creado el libro blanco para la regulación de la Inteligencia Artificial, resolviendo el debate en la Unión Europea. Estas directrices serán aplicadas a tecnologías de alto riesgo, por lo que aún sigue existiendo un largo camino por recorrer.

Más allá del bitcoin: qué significa realmente la llegada...

Todo el mundo habla del Bitcoin, pero la moneda digital no es más que la punta “visible” de un iceberg tecnológico. Más allá del ruido que provocan las criptomonedas, es importante tener en cuenta que sólo representan una pequeña aplicación de los numerosos usos que tiene la tecnología en la que se sustentan, el blockchain. Las oportunidades que ofrece el blockchain para los retailers son realmente interesantes, ya que se trata de una herramienta muy útil para toda la cadena de suministro. El blockchain es la joya de la corona para la nueva era de cambios que se están produciendo a nivel mundial.Las implicaciones del blockchain para los retailers:Disminución del número de intermediarios necesarios para la verificación de pagos y agilización de las transacciones – J.P Morgan Chase anunció la puesta en marcha de un sistema basado en blockchain para reducir los intermediarios necesarios para la verificación de pagos, lo cual supone una reducción de los tiempos que tardan en realizarse las transacciones, pasando de semanas a horas.​Incremento de la transparencia – El blockchain permite crear un ecosistema de intercambios abierto, descentralizado e inalterable, que permite al consumidor conocer hasta qué punto están en sintonía los valores de las marcas

Ni robot, ni animal: científicos crean el primer organismo...

La ingeniería genética concede la posibilidad de crear organismos gracias a los avances tecnológicos en los campos de la biología y la inteligencia artificial. Un equipo de investigación ha desarrollado organismos vivos, dotados de movimiento y programados para abordar diferentes cometidos. Actualmente, las innovaciones genéticas como los “xenobots”, muestran grandes utilidades para el ser humano y el medio ambiente, por lo que su desarrollo abre nuevos horizontes a la ciencia.